

1. Name, affiliation and position:

Prof. Stefano Passerini

Principal Scientist

Austrian Institute of Technology – Center for Transport Technologies

Giefinggasse 2, 1210 Wien, Austria

stefano.passerini@ait.ac.at

<https://publications.ait.ac.at/en/persons/stefano-passerini>

KIT Distinguished Senior Fellow

Helmholtz Institute Ulm - Karlsruhe Institute of Technology

Helmholtzstrasse 11, 89081 Ulm, Germany

stefano.passerini@kit.edu

ORCID: 0000-0002-6606-5304

ResearcherID: A-3859-2015

2. Picture:

3. Short CV:

Stefano Passerini is Senior advisor at Austrian Institute of Technology (2024-), Distinguished Senior Fellow at KIT (2023-) and Member of the Leopoldina German Academy of Science (2019-).

Previously, co-Founder and co-Director of the Münster Electrochemical Energy Storage center (MEET; 2010-13) and Director of Helmholtz Institute Ulm (HIU; 2018-21), his research focuses on the development of materials for high-energy batteries with the goal to create environmentally friendly and sustainable energy storage systems.

Co-author of more than 800 scientific papers (Scopus H-Index: 130; about 65,000 citations), a few book chapters and several international patents.

He has been awarded the

- Research Award of the ECS Battery Division (2012)
- Fellow of the International Society of Electrochemistry (2016)
- Fellow of the Electrochemical Society Inc (2020).

4. Title and Abstract:

Reactive Metals for Seasonal Energy Storage

Our society is facing a millennial challenge to slow down global warming below 2 °C in the long term.[1] Ambitious policy frameworks and policy intentions are a must to achieve this target. In fact, analyzing the status quo, International Energy Agency (IEA) concluded that the related carbon dioxide trajectories are not compatible with the climate targets, even if current policy commitments and pledges by governments are implemented.[2,3] The challenging issues are the limited use of renewables, merely considered for power generation, but only marginally addressing other carbon-intensive industrial sectors (e.g., cement, steel, smelting), and the practical reduction of CO₂ emissions from the transport sector.

Reactive metal-based storage systems are a new alternative to support the clean energy transition. Herein, the cases of Al and Na are presented, both preliminarily fulfilling the constraints regarding sustainability, but employing two rather different processes. Both, the steam combustion of molten Al for H₂ and heat production,[4,5] and a new rechargeable battery, which makes use of seawater and sodium as electrodes, show promising round-trip efficiencies.[6] The latter technology also allows CO₂-trapping, desalination, Na metal, and chlorine production. It is argued that further research efforts are needed to verify the sustainability and ability of reactive metal-based technologies to compete with other storage technologies.

References

- [1] Report of the Conference of the Parties on its Twenty-First Session, held in Paris from 30 November to 13 December 2015, FCCC/CP/2015/10/ Add.1, United Nations Framework on Climate Change, United Nations, New York 2016.
- [2] International Energy Agency, World Energy Outlook 2016, International Energy Agency, Paris 2016.
- [3] International Energy Agency, World Energy Outlook 2019, International Energy Agency, Paris 2019.
- [4] H. Ersoy, M. Baumann, L. Barelli, A. Ottaviano, L. Trombetti, M. Weil, S. Passerini, *Adv. Mater. Technol.* 2022, 2101400.
- [5] L. Barelli, M. Baumann, G. Bidini, P. A. Ottaviano, R. V. Schneider, S. Passerini, L. Trombetti, *Energy Technol.* 2020, 8, 2000233.
- [6] Y. Kim, M. Kuenzel, D. Steinle, X. Dong, G.-T. Kim, A. Varzi, S. Passerini, *Energy Environ. Sci.*, 2022, 15, 2610.